3.3.9 \(\int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {11}{2}}(c+d x)} \, dx\) [209]

3.3.9.1 Optimal result
3.3.9.2 Mathematica [B] (verified)
3.3.9.3 Rubi [A] (verified)
3.3.9.4 Maple [B] (verified)
3.3.9.5 Fricas [B] (verification not implemented)
3.3.9.6 Sympy [F(-1)]
3.3.9.7 Maxima [B] (verification not implemented)
3.3.9.8 Giac [F(-2)]
3.3.9.9 Mupad [F(-1)]

3.3.9.1 Optimal result

Integrand size = 28, antiderivative size = 239 \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {11}{2}}(c+d x)} \, dx=\frac {(4+4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{63 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {92 a^2 \sqrt {a+i a \tan (c+d x)}}{105 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {472 i a^2 \sqrt {a+i a \tan (c+d x)}}{315 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {1576 a^2 \sqrt {a+i a \tan (c+d x)}}{315 d \sqrt {\tan (c+d x)}} \]

output
(4+4*I)*a^(5/2)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^ 
(1/2))/d-1576/315*a^2*(a+I*a*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(1/2)-2/9*a^2* 
(a+I*a*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(9/2)-38/63*I*a^2*(a+I*a*tan(d*x+c)) 
^(1/2)/d/tan(d*x+c)^(7/2)+92/105*a^2*(a+I*a*tan(d*x+c))^(1/2)/d/tan(d*x+c) 
^(5/2)+472/315*I*a^2*(a+I*a*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(3/2)
 
3.3.9.2 Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(510\) vs. \(2(239)=478\).

Time = 7.29 (sec) , antiderivative size = 510, normalized size of antiderivative = 2.13 \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {11}{2}}(c+d x)} \, dx=\frac {4 \sqrt {2} a^2 \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {4 a^{5/2} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+i \tan (c+d x)} \sqrt {i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {5 \sqrt [4]{-1} a^2 \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {1+i \tan (c+d x)}}-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{63 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {92 a^2 \sqrt {a+i a \tan (c+d x)}}{105 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {472 i a^2 \sqrt {a+i a \tan (c+d x)}}{315 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {1576 a^2 \sqrt {a+i a \tan (c+d x)}}{315 d \sqrt {\tan (c+d x)}}-\frac {a^{3/2} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d \sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)}} \]

input
Integrate[(a + I*a*Tan[c + d*x])^(5/2)/Tan[c + d*x]^(11/2),x]
 
output
(4*Sqrt[2]*a^2*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c 
 + d*x]]]*Sqrt[I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]) - (4*a^(5/2)*ArcS 
inh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[1 + I*Tan[c + d*x]]*Sqrt[I*a*Tan[ 
c + d*x]])/(d*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) + (5*(-1)^(1/ 
4)*a^2*ArcSinh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]]*Sqrt[a + I*a*Tan[c + d*x]])/ 
(d*Sqrt[1 + I*Tan[c + d*x]]) - (2*a^2*Sqrt[a + I*a*Tan[c + d*x]])/(9*d*Tan 
[c + d*x]^(9/2)) - (((38*I)/63)*a^2*Sqrt[a + I*a*Tan[c + d*x]])/(d*Tan[c + 
 d*x]^(7/2)) + (92*a^2*Sqrt[a + I*a*Tan[c + d*x]])/(105*d*Tan[c + d*x]^(5/ 
2)) + (((472*I)/315)*a^2*Sqrt[a + I*a*Tan[c + d*x]])/(d*Tan[c + d*x]^(3/2) 
) - (1576*a^2*Sqrt[a + I*a*Tan[c + d*x]])/(315*d*Sqrt[Tan[c + d*x]]) - (a^ 
(3/2)*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[I*a*Tan[c + d*x]]*Sqrt[ 
a + I*a*Tan[c + d*x]])/(d*Sqrt[1 + I*Tan[c + d*x]]*Sqrt[Tan[c + d*x]])
 
3.3.9.3 Rubi [A] (verified)

Time = 1.46 (sec) , antiderivative size = 266, normalized size of antiderivative = 1.11, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.607, Rules used = {3042, 4036, 27, 3042, 4081, 27, 3042, 4081, 3042, 4081, 27, 3042, 4081, 27, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {11}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan (c+d x)^{11/2}}dx\)

\(\Big \downarrow \) 4036

\(\displaystyle -\frac {2}{9} \int -\frac {\sqrt {i \tan (c+d x) a+a} \left (19 i a^2-17 a^2 \tan (c+d x)\right )}{2 \tan ^{\frac {9}{2}}(c+d x)}dx-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \int \frac {\sqrt {i \tan (c+d x) a+a} \left (19 i a^2-17 a^2 \tan (c+d x)\right )}{\tan ^{\frac {9}{2}}(c+d x)}dx-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \int \frac {\sqrt {i \tan (c+d x) a+a} \left (19 i a^2-17 a^2 \tan (c+d x)\right )}{\tan (c+d x)^{9/2}}dx-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 4081

\(\displaystyle \frac {1}{9} \left (\frac {2 \int -\frac {3 \sqrt {i \tan (c+d x) a+a} \left (19 i \tan (c+d x) a^3+23 a^3\right )}{\tan ^{\frac {7}{2}}(c+d x)}dx}{7 a}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \left (-\frac {6 \int \frac {\sqrt {i \tan (c+d x) a+a} \left (19 i \tan (c+d x) a^3+23 a^3\right )}{\tan ^{\frac {7}{2}}(c+d x)}dx}{7 a}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (-\frac {6 \int \frac {\sqrt {i \tan (c+d x) a+a} \left (19 i \tan (c+d x) a^3+23 a^3\right )}{\tan (c+d x)^{7/2}}dx}{7 a}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 4081

\(\displaystyle \frac {1}{9} \left (-\frac {6 \left (\frac {2 \int \frac {\sqrt {i \tan (c+d x) a+a} \left (59 i a^4-46 a^4 \tan (c+d x)\right )}{\tan ^{\frac {5}{2}}(c+d x)}dx}{5 a}-\frac {46 a^3 \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )}{7 a}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (-\frac {6 \left (\frac {2 \int \frac {\sqrt {i \tan (c+d x) a+a} \left (59 i a^4-46 a^4 \tan (c+d x)\right )}{\tan (c+d x)^{5/2}}dx}{5 a}-\frac {46 a^3 \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )}{7 a}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 4081

\(\displaystyle \frac {1}{9} \left (-\frac {6 \left (\frac {2 \left (\frac {2 \int -\frac {\sqrt {i \tan (c+d x) a+a} \left (118 i \tan (c+d x) a^5+197 a^5\right )}{2 \tan ^{\frac {3}{2}}(c+d x)}dx}{3 a}-\frac {118 i a^4 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )}{5 a}-\frac {46 a^3 \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )}{7 a}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \left (-\frac {6 \left (\frac {2 \left (-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (118 i \tan (c+d x) a^5+197 a^5\right )}{\tan ^{\frac {3}{2}}(c+d x)}dx}{3 a}-\frac {118 i a^4 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )}{5 a}-\frac {46 a^3 \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )}{7 a}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (-\frac {6 \left (\frac {2 \left (-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} \left (118 i \tan (c+d x) a^5+197 a^5\right )}{\tan (c+d x)^{3/2}}dx}{3 a}-\frac {118 i a^4 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )}{5 a}-\frac {46 a^3 \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )}{7 a}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 4081

\(\displaystyle \frac {1}{9} \left (-\frac {6 \left (\frac {2 \left (-\frac {\frac {2 \int \frac {315 i a^6 \sqrt {i \tan (c+d x) a+a}}{2 \sqrt {\tan (c+d x)}}dx}{a}-\frac {394 a^5 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {118 i a^4 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )}{5 a}-\frac {46 a^3 \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )}{7 a}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \left (-\frac {6 \left (\frac {2 \left (-\frac {315 i a^5 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {394 a^5 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {118 i a^4 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )}{5 a}-\frac {46 a^3 \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )}{7 a}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (-\frac {6 \left (\frac {2 \left (-\frac {315 i a^5 \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {394 a^5 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {118 i a^4 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )}{5 a}-\frac {46 a^3 \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )}{7 a}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 4027

\(\displaystyle \frac {1}{9} \left (-\frac {6 \left (\frac {2 \left (-\frac {\frac {630 a^7 \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-\frac {394 a^5 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}-\frac {118 i a^4 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )}{5 a}-\frac {46 a^3 \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )}{7 a}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}\right )-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {1}{9} \left (-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{7 d \tan ^{\frac {7}{2}}(c+d x)}-\frac {6 \left (\frac {2 \left (-\frac {118 i a^4 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {\frac {(315+315 i) a^{11/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {394 a^5 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}}{3 a}\right )}{5 a}-\frac {46 a^3 \sqrt {a+i a \tan (c+d x)}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\right )}{7 a}\right )-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}\)

input
Int[(a + I*a*Tan[c + d*x])^(5/2)/Tan[c + d*x]^(11/2),x]
 
output
(-2*a^2*Sqrt[a + I*a*Tan[c + d*x]])/(9*d*Tan[c + d*x]^(9/2)) + ((((-38*I)/ 
7)*a^2*Sqrt[a + I*a*Tan[c + d*x]])/(d*Tan[c + d*x]^(7/2)) - (6*((-46*a^3*S 
qrt[a + I*a*Tan[c + d*x]])/(5*d*Tan[c + d*x]^(5/2)) + (2*((((-118*I)/3)*a^ 
4*Sqrt[a + I*a*Tan[c + d*x]])/(d*Tan[c + d*x]^(3/2)) - (((315 + 315*I)*a^( 
11/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d* 
x]]])/d - (394*a^5*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]))/(3* 
a)))/(5*a)))/(7*a))/9
 

3.3.9.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4036
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-a^2)*(b*c - a*d)*(a + b*Tan[e + f*x] 
)^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(b*c + a*d)*(n + 1))), x] + Si 
mp[a/(d*(b*c + a*d)*(n + 1))   Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[ 
e + f*x])^(n + 1)*Simp[b*(b*c*(m - 2) - a*d*(m - 2*n - 4)) + (a*b*c*(m - 2) 
 + b^2*d*(n + 1) - a^2*d*(m + n - 1))*Tan[e + f*x], x], x], x] /; FreeQ[{a, 
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + 
d^2, 0] && GtQ[m, 1] && LtQ[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 4081
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*(n + 
1)*(c^2 + d^2))), x] - Simp[1/(a*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + 
f*x])^m*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c* 
m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x], x] /; Fr 
eeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 
0] && LtQ[n, -1]
 
3.3.9.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 498 vs. \(2 (193 ) = 386\).

Time = 0.97 (sec) , antiderivative size = 499, normalized size of antiderivative = 2.09

method result size
derivativedivides \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (315 i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{5}\left (d x +c \right )\right )+315 \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{5}\left (d x +c \right )\right )+1576 \left (\tan ^{4}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}+1260 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \left (\tan ^{5}\left (d x +c \right )\right )-276 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )-472 i \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+190 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+70 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{315 d \tan \left (d x +c \right )^{\frac {9}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(499\)
default \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (315 i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{5}\left (d x +c \right )\right )+315 \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{5}\left (d x +c \right )\right )+1576 \left (\tan ^{4}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}+1260 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \left (\tan ^{5}\left (d x +c \right )\right )-276 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )-472 i \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+190 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+70 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{315 d \tan \left (d x +c \right )^{\frac {9}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(499\)

input
int((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(11/2),x,method=_RETURNVERBOSE)
 
output
-1/315/d*(a*(1+I*tan(d*x+c)))^(1/2)*a^2/tan(d*x+c)^(9/2)*(315*I*(I*a)^(1/2 
)*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2) 
-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^5+315*(I*a)^(1/2)*2^(1/2 
)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a 
*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^5+1576*tan(d*x+c)^4*(a*tan(d*x+c 
)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)+1260*(-I*a)^(1/2)*ln(1/ 
2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a) 
/(I*a)^(1/2))*a*tan(d*x+c)^5-276*(-I*a)^(1/2)*(I*a)^(1/2)*(a*tan(d*x+c)*(1 
+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^2-472*I*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+ 
c)^3*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+190*I*tan(d*x+c)*(a*tan(d*x+c)* 
(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)+70*(-I*a)^(1/2)*(I*a)^(1/ 
2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^ 
(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)
 
3.3.9.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 566 vs. \(2 (181) = 362\).

Time = 0.25 (sec) , antiderivative size = 566, normalized size of antiderivative = 2.37 \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {11}{2}}(c+d x)} \, dx=-\frac {8 \, \sqrt {2} {\left (646 i \, a^{2} e^{\left (11 i \, d x + 11 i \, c\right )} - 1001 i \, a^{2} e^{\left (9 i \, d x + 9 i \, c\right )} + 684 i \, a^{2} e^{\left (7 i \, d x + 7 i \, c\right )} + 966 i \, a^{2} e^{\left (5 i \, d x + 5 i \, c\right )} - 1050 i \, a^{2} e^{\left (3 i \, d x + 3 i \, c\right )} + 315 i \, a^{2} e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + 315 \, \sqrt {\frac {32 i \, a^{5}}{d^{2}}} {\left (d e^{\left (10 i \, d x + 10 i \, c\right )} - 5 \, d e^{\left (8 i \, d x + 8 i \, c\right )} + 10 \, d e^{\left (6 i \, d x + 6 i \, c\right )} - 10 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 5 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (\frac {{\left (4 \, \sqrt {2} {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + i \, \sqrt {\frac {32 i \, a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a^{2}}\right ) - 315 \, \sqrt {\frac {32 i \, a^{5}}{d^{2}}} {\left (d e^{\left (10 i \, d x + 10 i \, c\right )} - 5 \, d e^{\left (8 i \, d x + 8 i \, c\right )} + 10 \, d e^{\left (6 i \, d x + 6 i \, c\right )} - 10 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 5 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (\frac {{\left (4 \, \sqrt {2} {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - i \, \sqrt {\frac {32 i \, a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a^{2}}\right )}{630 \, {\left (d e^{\left (10 i \, d x + 10 i \, c\right )} - 5 \, d e^{\left (8 i \, d x + 8 i \, c\right )} + 10 \, d e^{\left (6 i \, d x + 6 i \, c\right )} - 10 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 5 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \]

input
integrate((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(11/2),x, algorithm="fricas" 
)
 
output
-1/630*(8*sqrt(2)*(646*I*a^2*e^(11*I*d*x + 11*I*c) - 1001*I*a^2*e^(9*I*d*x 
 + 9*I*c) + 684*I*a^2*e^(7*I*d*x + 7*I*c) + 966*I*a^2*e^(5*I*d*x + 5*I*c) 
- 1050*I*a^2*e^(3*I*d*x + 3*I*c) + 315*I*a^2*e^(I*d*x + I*c))*sqrt(a/(e^(2 
*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I* 
c) + 1)) + 315*sqrt(32*I*a^5/d^2)*(d*e^(10*I*d*x + 10*I*c) - 5*d*e^(8*I*d* 
x + 8*I*c) + 10*d*e^(6*I*d*x + 6*I*c) - 10*d*e^(4*I*d*x + 4*I*c) + 5*d*e^( 
2*I*d*x + 2*I*c) - d)*log(1/4*(4*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*s 
qrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I 
*d*x + 2*I*c) + 1)) + I*sqrt(32*I*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - 
I*c)/a^2) - 315*sqrt(32*I*a^5/d^2)*(d*e^(10*I*d*x + 10*I*c) - 5*d*e^(8*I*d 
*x + 8*I*c) + 10*d*e^(6*I*d*x + 6*I*c) - 10*d*e^(4*I*d*x + 4*I*c) + 5*d*e^ 
(2*I*d*x + 2*I*c) - d)*log(1/4*(4*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)* 
sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2* 
I*d*x + 2*I*c) + 1)) - I*sqrt(32*I*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - 
 I*c)/a^2))/(d*e^(10*I*d*x + 10*I*c) - 5*d*e^(8*I*d*x + 8*I*c) + 10*d*e^(6 
*I*d*x + 6*I*c) - 10*d*e^(4*I*d*x + 4*I*c) + 5*d*e^(2*I*d*x + 2*I*c) - d)
 
3.3.9.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {11}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+I*a*tan(d*x+c))**(5/2)/tan(d*x+c)**(11/2),x)
 
output
Timed out
 
3.3.9.7 Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 3508 vs. \(2 (181) = 362\).

Time = 1.09 (sec) , antiderivative size = 3508, normalized size of antiderivative = 14.68 \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {11}{2}}(c+d x)} \, dx=\text {Too large to display} \]

input
integrate((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(11/2),x, algorithm="maxima" 
)
 
output
-1/1260*(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) 
 + 1)*(((5040*I - 5040)*a^2*cos(7*d*x + 7*c) - (16800*I - 16800)*a^2*cos(5 
*d*x + 5*c) + (20496*I - 20496)*a^2*cos(3*d*x + 3*c) - (9071*I - 9071)*a^2 
*cos(d*x + c) - (5040*I + 5040)*a^2*sin(7*d*x + 7*c) + (16800*I + 16800)*a 
^2*sin(5*d*x + 5*c) - (20496*I + 20496)*a^2*sin(3*d*x + 3*c) + (9071*I + 9 
071)*a^2*sin(d*x + c))*cos(7/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) 
 + 1)) + 8*(121*(-(I - 1)*a^2*cos(d*x + c) + (I + 1)*a^2*sin(d*x + c))*cos 
(2*d*x + 2*c)^2 - (121*I - 121)*a^2*cos(d*x + c) + 121*(-(I - 1)*a^2*cos(d 
*x + c) + (I + 1)*a^2*sin(d*x + c))*sin(2*d*x + 2*c)^2 + (121*I + 121)*a^2 
*sin(d*x + c) + 630*((I - 1)*a^2*cos(2*d*x + 2*c)^2 + (I - 1)*a^2*sin(2*d* 
x + 2*c)^2 - (2*I - 2)*a^2*cos(2*d*x + 2*c) + (I - 1)*a^2)*cos(3*d*x + 3*c 
) + 242*((I - 1)*a^2*cos(d*x + c) - (I + 1)*a^2*sin(d*x + c))*cos(2*d*x + 
2*c) + 630*(-(I + 1)*a^2*cos(2*d*x + 2*c)^2 - (I + 1)*a^2*sin(2*d*x + 2*c) 
^2 + (2*I + 2)*a^2*cos(2*d*x + 2*c) - (I + 1)*a^2)*sin(3*d*x + 3*c))*cos(3 
/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) + (-(5040*I + 5040)*a 
^2*cos(7*d*x + 7*c) + (16800*I + 16800)*a^2*cos(5*d*x + 5*c) - (20496*I + 
20496)*a^2*cos(3*d*x + 3*c) + (9071*I + 9071)*a^2*cos(d*x + c) - (5040*I - 
 5040)*a^2*sin(7*d*x + 7*c) + (16800*I - 16800)*a^2*sin(5*d*x + 5*c) - (20 
496*I - 20496)*a^2*sin(3*d*x + 3*c) + (9071*I - 9071)*a^2*sin(d*x + c))*si 
n(7/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) + 8*(121*((I + ...
 
3.3.9.8 Giac [F(-2)]

Exception generated. \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {11}{2}}(c+d x)} \, dx=\text {Exception raised: TypeError} \]

input
integrate((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(11/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Non regular value [0] was discarded 
 and replaced randomly by 0=[-64]Warning, replacing -64 by 68, a substitut 
ion varia
 
3.3.9.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {11}{2}}(c+d x)} \, dx=\int \frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}{{\mathrm {tan}\left (c+d\,x\right )}^{11/2}} \,d x \]

input
int((a + a*tan(c + d*x)*1i)^(5/2)/tan(c + d*x)^(11/2),x)
 
output
int((a + a*tan(c + d*x)*1i)^(5/2)/tan(c + d*x)^(11/2), x)